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Abstract
Quantification of fatty vacuoles in the liver, with differentiation from lumina of liver blood vessels and bile ducts, is an example
where the traditional semiquantitative pathology assessment can be enhanced with artificial intelligence (AI) algorithms. Using glass
slides of mice liver as a model for nonalcoholic fatty liver disease, a deep learning AI algorithm was developed. This algorithm uses a
segmentation framework for vacuole quantification and can be deployed to analyze live histopathology fields during the
microscope-based pathology assessment. We compared the manual semiquantitative microscope-based assessment with the
quantitative output of the deep learning algorithm. The deep learning algorithm was able to recognize and quantify the percent of
fatty vacuoles, exhibiting a strong and significant correlation (r ¼ 0.87, P < .001) between the semiquantitative and quantitative
assessment methods. The use of deep learning algorithms for difficult quantifications within the microscope-based pathology
assessment can help improve outputs of toxicologic pathology workflows.
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Nonalcoholic fatty liver disease (NAFLD) is caused by the

accumulation of excess neutral fats or triglycerides in the liver

of patients without previous exposure to alcohol.1,2 Considered

the most prevalent liver disease in the Western world with

incidence of 25% to 30%,3 NAFLD can lead to a more danger-

ous necroinflammatory condition, termed nonalcoholic steato-

hepatitis (NASH).4 As there are no approved treatments for

NAFLD and NASH, they are considered disorders with high

unmet clinical therapeutic needs,5 a fact that has facilitated the

development of a large number of clinically relevant rodent

models.2,5

Histologically, the accumulation of fat in hepatocytes can be

classified into microvesicular and macrovesicular steatosis.

Microvesicular steatosis is characterized by small fat-filled

vacuoles surrounding the nucleus.6 As the condition pro-

gresses, the vacuoles increase in size and push the nucleus to

the periphery of the cell, a condition termed macrovesicular

steatosis.2 However, as has been shown before, this is a diffi-

cult finding to assess and is characterized by intra- and inter-

observer variability in the pathologists’ evaluation of these

histological findings.7–10 Therefore, automated computational

methods to quantify these changes can increase accuracy,

decrease variability, and provide continuous quantification

(and not semiquantitative grading).9

A major hurdle in automatically quantifying liver steatosis

is to accurately detect the micro- and macrovesicles. In

hematoxylin and eosin (H&E) staining, there exist several

structures which contain clear glass, including not only the fat

vesicles but also the lumina of vessels (eg, portal and central

veins, portal arteries, and sinusoids) and bile ducts.9

Recent advances in the fields of digital pathology, tissue

image analysis, and artificial intelligence (AI) have been used

in the field of toxicologic pathology. AI is a tool that could be

used to differentiate between normal and abnormal samples

and to reduce inter- and intralaboratory variability that exists

when using semiquantitative grading systems.11

While cited in previous papers, it is important to distinguish

between different terms commonly associated with AI. The

term AI encompasses any algorithm that aims at making

machines capable of performing human tasks. Machine
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learning and deep learning are types of AI algorithms: Machine

learning is a method of statistical learning where each instance

in a data set is described by a set of features or attributes. In

contrast, the term deep learning is a method of statistical learn-

ing that extracts features or attributes from raw data by using

neural networks with many hidden layers, big data, and pow-

erful computational resources.12 In the context of vacuole

detection, if a machine learning-based approach was used, the

features extraction (shape, texture, color, etc.) and classifica-

tion/segmentation would have been individual tasks driven by

2 independent algorithms. However, with deep learning, the

neural network takes the images as input and performs both

feature extraction and classification/segmentation.

In this study, we compared the traditional semiquantitative

microscope-based evaluation by an experienced toxicologic

pathologist to a deep learning-based identification and quanti-

fication application that was performed on a computer screen

that is connected to a microscope camera that feeds images in

real time to that computer. To perform this comparison, we

used data extracted from 2 studies that were aimed to test the

effects of dietary broccoli on NAFLD progression, using 2

different mouse models.13

The AI application (AIRA Matrix) used in this study is

based on a semiautomated algorithm and was developed using

a segmentation framework for vacuole quantification via deep

learning. In this method, a selective tiling technique was ini-

tially used to generate tiles that include complete lumina (vas-

cular and bile duct) and large vacuoles without any partial

regions, followed by a supervised learning method using an

encoder–decoder convolution neural network (CNN) architec-

ture for segmenting individual vacuoles.

By separating the larger input image into smaller images

with equal-sized tiles, and then by training a supervised learn-

ing framework to segment individual vacuoles, the tiles are

capable of being trained in the CNN to avoid resizing the input

image and maintain object magnification. First, overlapping

tiles are extracted with a fixed overlap percentage of T by

uniformly distributing across the input image. We choose an

overlap of T ¼ 25% in our algorithm. This helps in achieving

complete coverage of the image while maintaining a constant

overlap between tiles. To address the issue of misclassification

of lumina (vascular and bile duct) as large vacuoles, a method

aimed at detecting regions in a digital image that have peculiar

properties, called blob detector, is applied to extract large white

blobs (lumina and large vacuoles). In this algorithm, the blob

detector identifies white spaces in the image (intensity, color,

and saturation are the necessary cues used by the blob detec-

tor). The output of the blob detector therefore captures both

vacuoles and nonvacuole white regions in a digital image. An

empirical threshold is applied on the size of a blob/region to

eliminate very large white spaces. The remainder of the

detected regions are passed on for deep learning inference to

eliminate lumen and other regions which have similar shape

characteristics as that of a vacuole. This selective tiling

improves the model performance in distinguishing between a

lumen and a large vacuole.

This step is followed by a supervised learning method using

an encoder–decoder CNN architecture for segmenting individ-

ual vacuoles. The network used in this step consists of a 4-stage

encoding and a 4-stage decoding architecture. To implement

residual learning, output of each stage of the encoding branch is

added to the input of the analogous stage of the decoding

branch, and the element wise sum is fed into convolution layers

for that decoding branch. Final vacuolation percentage is then

calculated as the ratio of detected vacuoles to the tissue region

([detected vacuole area]/[Tissue area] * 100). The tissue region

is extracted after eliminating all the clear glass regions and any

circulating cells appearing at the vessel centers. Color-based

thresholding is performed on image to get the clear glass area.

Blob detection and morphological operations are then per-

formed on the color thresholded image to eliminate the circu-

lating cells.

Once developed, the AI quantification tool was deployed to

perform real-time on the author’s Olympus BX51 microscope

that had been outfitted with a digital pathology imaging and

display system (Augmentiqs).14,15 The Augmentiqs system

contains a high-resolution camera for viewing and imaging the

region of interest, and an OpenAPI through which third-party

algorithms and software are deployed, including the above-

mentioned AI algorithm. The results of the image analysis

algorithms are displayed in real time on the screen of a PC,

located in close proximity to the microscope, or as augmented

reality on top of the optical plane of the specimen within the

microscope eyepiece.

The experimental design consisted of 2 different

experiments:

1. High-fat diet (HFD) experiment: 16 male C57BL/6 J

mice, acquired from Harlan Laboratories, were ran-

domly assigned to 6 groups (n ¼ 4 animals/group):

normal diet; HFDþ 10% (wt/wt) dietary broccoli; HFD

þ 10% (wt/wt) dietary broccoli stalks. The animals

were fed the assigned diets for 17 weeks.

2. High cholesterol and cholate diet (HCD) experiment:

16 male C57BL/6 J mice, acquired from Harlan Labora-

tories, were randomly assigned to 4 groups (n ¼ 4 ani-

mals/group): normal diet; diet high in fat high

cholesterol (1%) and cholate (0.5%) (HCD; atherogenic

diet); HCD þ 15% (wt/wt) dietary broccoli; HCD þ
15% (wt/wt) dietary broccoli stalks. The animals were

fed the assigned diets for 7 weeks.

The mice were housed in a controlled environment (12/12

hours of light/dark cycle, 18 �C -24 �C) with ad libitum access

to food and water. At the end of the study, the mice were killed

by isoflurane after a 12-hour fast.

For histopathological analysis, the liver tissue was collected,

and a sample from the right lobe was placed in 4% formalde-

hyde. After embedding of the tissues in paraffin, a single sec-

tion (3-5 mm thick) was cut from each block and stained with

H&E. Histopathological changes were described and scored

via microscope assessment using a semiquantitative grading
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(0-4), taking into consideration the severity of the changes: 0¼
no lesion; 1¼minimal change; 2¼mild change; 3¼moderate

change; and 4 ¼ marked change.16 The scoring reflects the

predominant degree of the specific lesion seen in the entire

field of the histology section. The histopathological evaluation

was done using the regular microscopic range of magnifica-

tions, up to �600. All experimental procedures were done

according to the guidelines of the Authority for Biological and

Biomedical Models and were approved by the Animal Care

Ethics Committee of the Hebrew University of Jerusalem.

In each individual liver section for both experiments, 5

different microscopic fields (magnification �600) were

selected randomly by a board-certified pathologist, all

located in the centrilobular regions (in HFD experiment)

or in the perilobular regions (in HCD experiment). To avoid

potential bias, the pathologist performed the semiquantita-

tive assessment before the AI algorithm for quantitative

assessment was applied. Photos have been taken for docu-

mentation purposes.

The deep learning AI algorithm was trained on 750 tiles

(512 � 512) extracted from 60 field of view images. The algo-

rithm performance was evaluated on a separate validation data

set marked by the pathologist consisting of 75 tiles without any

overlap with the training set tiles. The evaluation metrics used

for assessing the performance of the algorithm were precision,

sensitivity, specificity, and F1 score. The algorithm performed

at par or better in comparison with state-of-the-art networks.

Further validation studies comparing algorithm output vis-à-vis

manual examination output by pathologist will be performed to

confirm satisfactory performance characteristics above prede-

fined cutoffs, before application in the laboratory.

For statistical analysis, Tukey’s multiple comparison tests

were used to compare the percent of fatty vacuoles in the liver

between the different treatment groups. The association

between the group average grade of fatty liver assessed by

semiquantitative scoring and the percent of fatty vacuoles

assessed by AI quantitative evaluation was calculated by the

Spearman correlation coefficient.

In the HFD experiment, histopathology examination of the livers

showed the highest grade (4) of cytoplasmic fatty vacuoles in ani-

mals fed with HFD, lower grade was shown in the animals treated

with normal diet and HFDþ 10% (w/w) dietary broccoli or broccoli

stalks, compared with the HFD group (Table 1). Quantitative eva-

luation of the percent of fatty vacuoles in the different groups using

AI showed that the HFD led to a statistically higher percent of fatty

vacuoles in the liver when compared to all treatment groups

(Tables 1 and 2). The addition of dietary broccoli statistically

reduced the percent of fatty vacuoles in the liver (Tables 1 and 2).

In the HCD experiment, histopathologic examination of the

livers showed cytoplasmic fatty vacuoles with lower severity

grade in the normal diet group, and higher severity grades in the

HCD groups, with or without the addition of dietary broccoli

(Table 3). Quantitative evaluation of the percent of fatty vacuoles

in the different groups using AI showed that the HCD diet led to a

statistically higher percent of fatty vacuoles in the liver when

compared to normal diet (Tables 3 and 4). The addition of dietary

Table 1. Grade of Hepatocytic Vacuolation Assessed by a
Semiquantitative Scale (0-4) Versus Average Percentage of
Hepatocytic Vacuolation, Assessed by Artificial Intelligence in HFD
Experiment.

Group

Animal 1
(in each
group)

Animal 2
(in each
group)

Animal 3
(in each
group)

Animal 4
(in each
group)

SSG AI SSG AI SSG AI SSG AI

Normal diet 1 1.9 2 2.07 1 1.02 4 13.75
HFD 4 26.9 4 18.45 4 22.77 4 21.48
HFDþ 10% (wt/

wt) dietary
broccoli

3 10.31 3 11.33 4 11.446 4 28.29

HFDþ 10% (wt/
wt) dietary
broccoli
stalks

3 5.7 3 10.53 4 18.06 3 17.01

Abbreviations: AI, artificial intelligence; HFD, high-fat diet; SSG,
Semiquantitative Scale Grade.

Table 2. Quantitative Evaluation Using Artificial Intelligence of the
Average Percentage of Fatty Vacuoles in the Livers of Animals in HFD
Experiment.a

Group
% Fatty vacuoles in

hepatocytes

Normal diet 1.67 + 0.28b

HFD diet 22.4 + 1.75c

HFD þ 10% (wt/wt) dietary broccoli 11.02 + 0.31d

HFD þ 10% (wt/wt) dietary broccoli stalks 12.82 + 2.9d

Abbreviation: HFD, high-fat diet.
aDifferent letters (b, c, d) denote significant differences between groups (P <
.05).

Table 3. Grade of Hepatocytic Vacuolation Assessed by a
Semiquantitative Scale (0-4) Versus Average Percentage of
Hepatocytic Vacuolation, Assessed by Artificial Intelligence in HCD
Experiment.

Group

Animal 1
(in each
group)

Animal 2
(in each
group)

Animal 3
(in each
group)

Animal 4
(in each
group)

SSG AI SSG AI SSG AI SSG AI

Normal diet 0 4.4 0 2.74 1 5.31 1 4.08
HCD 1 8.37 3 13.19 3 12.67 3 10.94
HCD þ 15%

(wt/wt) dietary
broccoli

3 6.31 3 8.08 4 17.01 3 15.59

HCD þ 15%
(wt/wt) dietary
broccoli stalks

3 9.55 3 7.72 4 13.05 3 11.33

Abbreviations: AI, artificial intelligence; HCD, high cholesterol (1%) and cholate
(0.5%); SSG, Semiquantitative Scale Grade.
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broccoli did not statistically reduce the percent of fatty vacuoles in

the liver (Tables 3 and 4).

By using the Spearman’s test, a strong and significant cor-

relation (r ¼ 0.87, P < .001) was found between the

microscope-based semiquantitative assessment, and the AI

quantitative measurement of fatty vacuoles accumulation in the

livers. Representative images showing the correlation between

the two methods are shown in Figures 1–8.

The use of AI in toxicologic pathology is evolving rapidly

and has already been documented in several mouse models.11

For example, deep learning methods have been used to quanti-

tate deposition of mesangial matrix in glomeruli of a mouse

model for diabetic nephropathy17 as well as to quantitate renal

interstitial fibrosis.18 Convolution neural network algorithm

was also used in mice to count tyrosine hydroxylase immunor-

eactive neurons in the substantia nigra.19

Such methods are sometimes difficult to implement in tis-

sues where there are significant similarities between the target

structures to be quantified and adjacent nonrelevant structures.

Table 4. Quantitative Evaluation Using Artificial Intelligence of the
Average Percentage of Fatty Vacuoles in the Livers of Animals in HCD
Experiment.a

Group
% Fatty vacuoles
in hepatocytes

Normal diet 4.13 + 0.53b

HCD 11.3 + 1.09c

HCD þ 15% (wt/wt) dietary broccoli 11.75 + 2.67c

HCD þ 15% (wt/wt) dietary broccoli stalks 10.41 + 1.15bc

Abbreviation: HCD, high cholesterol (1%) and cholate (0.5%).
aDifferent letters (b, c) denote significant differences between groups (P < .05).

Figures 1. Histology section of the perilobular region of the liver from a mouse fed normal diet for 7 weeks. Hematoxylin and eosin staining.
Figure 2. Histology section of the perilobular region of the liver from a mouse fed normal diet for 7 weeks. The correlated fatty vacuolation as
seen with the fatty liver algorithm. The cytoplasmic fatty vacuoles (scored grade 0 by semiquantitative evaluation) appear clear with hematoxylin
and eosin staining, and red highlighted by the application of artificial intelligence. Figure 3. Histology section of the perilobular region of the liver
from a mouse fed high-fat diet with 1% cholesterol and 0.5% cholic acid for 7 weeks. Hematoxylin and eosin staining. Figure 4. Histology section
of the perilobular region of the liver from a mouse fed high-fat diet with 1% cholesterol and 0.5% cholic acid for 7 weeks. The correlated fatty
vacuolation (scored grade 3 by semiquantitative evaluation) as seen with the fatty liver algorithm. The cytoplasmic fatty vacuoles appear clear with
hematoxylin and eosin staining, and red highlighted by the application of the artificial intelligence.
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Such is the case when quantifying fatty vacuole accumulation in

the liver where these structures can resemble the abundant

lumina of vessels and biliary ducts. Therefore, when implement-

ing new techniques to automatically quantitate such structures, it

is essential to properly correlate them with the traditional semi-

quantitative analysis used in toxicologic pathology.

Using the Spearman test, a strong and significant association

was found between the 2 assessment methods. The automated

quantitative assessment provided means for performing more

reliable and accurate statistical analysis (Tables 2 and 4) to

compare the different treatment groups in our model.

Our results using the AI application developed by AIRA

Matrix are in strong agreement with a recent study that used

a different image analysis software to quantify liver steatosis in

a mouse model.20 In this study, there was also a strong correla-

tion between the automated measurement of steatosis and the

steatosis score assessed by a pathologist (r¼ 0.89). In the same

study, the automated image analysis software was also used to

assess inflammation and fibrosis, demonstrating strong corre-

lation between the automated and manual measurements.

Together with our current study, there is good evidence to

support the use of AI for assessing the different components

of NAFLD and NASH. This is especially true to the lower

grades of steatosis (eg differentiating between minimal patho-

logical changes and normal background findings), where larger

variances may exist between different toxicologic pathologists

and even between different assessments of the same patholo-

gist.16 This was also observed in the lower grades of steatosis in

the current study. For example, animal 1 in normal diet group

of the HCD experiment had a lower grade of hepatocytic

vacuolation by manual semiquantitative scoring when com-

pared to animal 4 from the same group, although quantitative

Figures 5. Histology section of the perilobular region of the liver from a mouse fed high-fat diet with 1% cholesterol and 0.5% cholic acid þ 15%
broccoli for 7 weeks. Hematoxylin and eosin staining. Figure 6. Histology section of the perilobular region of the liver from a mouse fed high-fat
diet with 1% cholesterol and 0.5% cholic acid þ 15% broccoli for 7 weeks. The correlated fatty vacuolation (scored grade 3 by semiquantitative
evaluation) as seen with the fatty liver algorithm. The cytoplasmic fatty vacuoles appear clear with hematoxylin and eosin staining, and red
highlighted by the application of the artificial intelligence. Figure 7. Histology section of the perilobular region of the liver from a mouse fed high-
fat diet with 1% cholesterol and 0.5% cholic acidþ 15% broccoli stalks for 7 weeks. Hematoxylin and eosin staining. Figure 8. Histology section of
the perilobular region of the liver from a mouse fed high-fat diet with 1% cholesterol and 0.5% cholic acid þ 15% broccoli stalks for 7 weeks. The
correlated fatty vacuolation (scored grade 3 by semiquantitative evaluation) as seen with the fatty liver algorithm. The cytoplasmic fatty vacuoles
appear clear with hematoxylin and eosin staining, and red color is highlighted by the application of the artificial intelligence.
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evaluation by AI showed a higher percentage of hepatocytic

vacuolation in animal 1 (Table 3).

To the best of our knowledge, this is the first study to compare

between the quantification results of an AI application for fatty

vacuole accumulation and the semiquantitative evaluation per-

formed by a board-certified toxicologic pathologist using a fully

microscope-based approach. This method of deploying digital

pathology applications such as AI and deep learning within the

existing microscope workflow will likely be studied by other scien-

tists in the future. In the field of toxicologic pathology, the use of

image analysis in histopathological tissue assessment is expected

to continue developing, especially for quantification purposes, to

further support the integrity of assessments and diagnoses. We

believe that reporting new AI applications and their correlation

with microscope-based evaluation will be of great benefit to tox-

icologist pathologists for future utilization in daily practice.
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